The Four Classes That I Have Self-Studied
While I have access to many advanced and high-quality classes at Berkeley, sometimes I need or want to review foundational topics to make sure I really get the material. I skipped (or did not do well in) some early prerequisites for upper-level computer science and math courses, so I constantly feel like I have to make up for that in my own time.
In this post, I describe four classes that I have self-studied to a substantial extent. Two are from MIT’s Open Course Ware (OCW), and two are from UC Berkeley. All four of my self-studying pursuits were enormously beneficial to me.
Here are the courses listed according to the time I self-studied the material (“My Time”):
18.440, Probability and Random Variables
- Institution: Massachusetts Institute of Technology
- Professor: Scott Sheffield
- Course Offering: Spring 2011
- My Time: Summer 2012
To prepare for my probability class at Williams, I decided to go through MIT’s version of the same class. (In fact, I even made a blog post about this.) Unfortunately, the version on OCW doesn’t offer any lecture videos, so I instead went through all the lecture slides and made sure to understand basically everything covered there. I also took both practice midterms and the practice final, which were surprisingly easy.
To increase my understanding as I was studying the OCW materials, I also read a draft of The Probability Lifesaver, written by Steven Miller (a professor at Williams College).
CS 61B, Data Structures
- Institution: University of California, Berkeley
- Professor: Jonathan Shewchuk
- Course Offering: Spring 2014
- My Time: Summer 2014
I went through all of the class lecture notes from the course website (accessible through Shewchuk’s homepage) and made sure to study them well. I went through all of the homeworks and labs, and made some progress on all three of the major projects. I didn’t complete them – I just got to a stage where I knew I had made a lot of progress and felt that I understood the purpose of the project. One thing I wish I had time for was to do more practice exams, especially those from Paul Hilfinger’s versions of CS 61B (a.k.a. the harder versions).
This class was super helpful for me because I never had a strong data structures education, so I reviewed a lot of concepts that I had implicitly assumed were true but didn’t know why. Reviewing CS 61B made it possible for me to do the tough Java programming assignments in CS 288.
18.06, Linear Algebra
- Institution: Massachusetts Institute of Technology
- Professor: Gilbert Strang
- Course Offering: Spring 2010
- My Time: December 2014 and January 2015
This is a fairly popular MIT OCW course, in part because of the reasonably high quality video lectures. Gilbert Strang lectures at a relatively slow pace, which is fine with me because I prefer slow-paced lectures (and tough assignments). I went through all of the video lectures and made sure to understand them as much as I could, which alone was enough for me to feel like I learned a lot. I briefly read some other related class handouts, but most of the time, my supplemental learning resource was … Wikipedia.
In the future, I should do some of the practice exams.
CS 188: Introduction to Artificial Intelligence
- Institution: University of California, Berkeley
- Professors: Pieter Abbeel and Daniel Klein
- Course Offering: Spring 2012, 2013, and 2014 (varies)
- My Time: Summer 2015
This is a popular undergraduate CS course, both within CS and outside of CS for student who want to “try out computer science.” Fortunately, the class has a lot of material online. I went through all 24 video lectures, but I used different years depending on which YouTube videos had auto-captions and/or which ones had louder sound. Each lecture came with detailed (and humorous) slides, so I read all of those as well.
In addition, I think I took about 15 practice exams (yes, that is not a typo) and rigorously checked my answers with the solutions. It was probably overkill for me, but I really wanted to know this material well. To my disappointment, I noticed that certain questions were recycled (in some form) year after year. Thus, I can’t wait to be a GSI for this class later so I can ramp up the difficulty of the exams by not using those kind of questions.
The Future
I plan to continue my self-studying pursuits during the upcoming summer. Here are the courses on my “self-study radar”:
-
At UC Berkeley, CS 61C, Machine Structures. This in in progress … but barely. I’ve personally resolved that I won’t do any other self-studying of a computer science course until I finish this one. Knowing this material down cold is simply too important for me. After this, I can branch off to other, more advanced areas such as self-studying operating systems.
-
At MIT, 8.01, Introduction to Physics. I’ve never taken a physics course before and I have not started doing this. The downside is that it might be tough to find practice material since MIT had to pull down the material due to Walter Lewin’s inappropriate actions. The videos are online, but I may have to do some searching for the assignments and exams.
I don’t have anything on my radar for math and statistics, in part because probability and linear algebra are so ridiculously important, that if I really wanted to do any self-studying, it would be better for me to actually re-re-study those two courses! In fact, I should probably be doing that this summer anyway.