GSIing for Berkeley's Deep Neural Networks Class
In news that might be welcome to the students taking CS 294129, “Designing, Visualizing, and Understanding Deep Neural Networks” this semester, I got recruited as the second GSI (Graduate Student Instructor, a.k.a. Teaching Assistant) for the class.
Why do I say this might be good news for the students? First, I hope they realize how much I enjoy teaching. I like to provide hints (but not complete solutions) to students when they need it, because it feels good when students are able to learn and benefit from my presence. I’m also tolerant of students who have to come to office hours frequently, because quite frankly, I was one of those students for a brief time in undergrad (thankfully, since outgrown).
Probably the biggest reason why I think students will like my new GSI position is that, in news that will surprise no one, the class was substantially overenrolled at the start of the semester. My guess is that we had around a hundred students^{1} who wanted to take the class … but no GSI. Fortunately, the class got one GSI a few weeks into the semester, which meant everyone (I hope) on the waitlist got in. Then I became a GSI. The irony is that both of us started as normal students. I like to think of it as “getting promoted as a GSI.” With two of us, it means that students will get their homeworks graded faster. The first one was already due a week ago, and the second one is due next Friday. Gulp.
So what is this class about? It was a lastminute addition to the curriculum for the semester, but fortunately, the class is based on CS 231n from Stanford University, which has already been offered twice. This means we can borrow their three homework assignments, as well as the style of their midterm questions (though I hope we don’t use the exact same questions …). In addition, since we are on a semester system and Stanford is on a quarter system, we can cover slightly more material^{2}, such as Deep Reinforcement Learning, Monte Carlo methods, and current research directions with Deep Learning, which do not appear to be on the CS 231n syllabus.
Incidentally, by looking at the Stanford CS 231n offering for Winter 2016, they had three instructors and eleven teaching assistants. There were apparently 200 final projects for the class, and since students could pair up for those, that corresponds to about 300400 students total (wow!). We certainly don’t have nearly as many students, but there still is not enough course staff to make the studenttostaff ratio match.
Our homework assignments, as mentioned earlier, are borrowed from the Stanford version. I did the first one and am almost done with the second. The assignments are based on Jupyter Notebooks (awesome!) and done entirely in Python. And I’d like to give my congratulations to the CS 231n staff, because the assignments are awesome. They are challenging enough to stimulate the deepest parts of my brain (pun intended), but not so hard enough that I have to constantly ask someone for help, which would be a bit embarrassing for a GSI. One of the things I really like about the assignments is that they give me a taste for how real deep network systems are implemented. In my undergraduate machine learning class, I implemented backpropgation for a very simple, fully connected neural network, but that was a “naive” version, with me iterating through arrays and following a formulaic definition. That worked out fine, but in practice, neural network code must be modular enough (and vectorized!) to allow for effective training on deep networks. Oh, and did I mention that most networks for image recognition are not fully connected but convolutional nets? That makes the implementation much more challenging!
I’m excited to be joining the course staff for CS 294129, and I hope that I and the rest of the students will enjoy the course. Probably the one downside to being a GSI is that I may have to face student complaints (moreso than when I was TAing in undergrad) since GSIs have more grading responsibility.

It’s a bit tough to say how many students we have exactly, since some join after the start date and others drop. The Piazza website says that there are 165 people enrolled, but that also includes students who have dropped the class. ↩

Our textbook is based on the online book by Goodfellow et al. I was hoping to read through the full book at some point, so this class gives me a great opportunity to do that! ↩